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We treat the infiltration of an initially dry deformable porous medium by a pressurized 
liquid, taking into account the influence of variations in permeability within the 
deformed porous medium. Chief assumptions of our analysis are neglect of gravity, of 
inertial forces, and of partial saturation in the porous medium. We focus on 
unidirectional infiltration under constant liquid pressure, and present data from the 
infiltration of polyurethane sponge by ethylene glycol in a configuration of nearly 
unidirectional infiltration with reflief from friction effects along sample sides. We find 
excellent agreement between theory and experiment at longer infiltration times. We 
examine an additional assumption, namely the neglect of solid-phase velocity compared 
with average local liquid velicity at lower porous-medium strains. Agreement of this 
simplified model with experimental data, albeit less good, remains quite acceptable 
given the considerable computational simplicity it produces. 

1. Introduction 
One of the principal composite material production techniques is infiltration, by 

which a matrix material in liquid form is injected into a porous solid perform of 
reinforcing phase elements such as fibres, whiskers or particles. In this process, the 
liquid matrix is often pressurized to speed the rate of production of the composite, and 
to overcome capillary forces which may oppose entry of the fluid into the preform. 
Applied pressure, and the frequently high compliance of the porous preforms, can 
cause significant preform deformation during infiltration (e.g. Gutowski, Morigaki & 
Cai 1987; Yamauchi & Nishida 1995). This deformation, in turn, influences the rate of 
flow of the liquid into the preform, and the microstructure of the resulting material. 

The flow of liquids through deformable media is a class of problems that has 
relevance in various other contexts, including biomechanics, magma mechanics, 
ground water hydrology, soil consolidation and reservoir engineering. Governing 
mechanics of this process are well understood; however coupling between flow of the 
fluid and mechanical deformation of the solid causes the formulation and solution of 
this class of problems to be sufficiently involved that simplifying assumptions are often 
invoked. 

This paper examines assumptions appropriate when pressure driving liquid into a 
dry porous medium is high in comparison with the range of capillary pressures 
characteristic of wetting of the porous medium by the liquid. The simplifications we use 
are based on the observation that permeability K of a porous medium depends strongly 
on the pore volume fraction 6 within this medium: using the Kozeny-Carman 
expression K is proportional to 63( 1 - 6)-2 (Philip 1968). For A6 = 0.1, then, K always 
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changes by more than loo%, and by substantially more for 0 near one or zero. In 
pressurized infiltration, therefore, the permeability cannot be taken to be constant if 
deformation of the porous medium is significant, contrary to what is often assumed in 
‘ small-strain’ flow through deforming porous media (e.g. Bear 1972; Scheidegger 
1974; Bear & Bachmat 1990). 

‘ Small-strain ’ assumptions were relaxed by Philip and co-workers for several basic 
problems of fluid flow through deformable porous media, with a focus on flow of water 
through swelling clay-based soils. These authors extended the Boltzmann trans- 
formation commonly used to treat the unidirectional infiltration of non-deforming 
media to the analysis of unidirectional gravity-free infiltration into swelling media, 
using Eulerian as well as Lagrangian coordinates (Philip 1968, 1969a, b). These 
features of the work by Philip and co-workers are incorporated in the analysis 
presented here. Experimental confirmation of the predicted time-dependence resulting 
from validity of the Boltzmann transformation has been reported for unidirectional 
infiltration into swelling soils (Smiles & Rosenthal 1968; Smiles & Colombera 1975; 
Angulo et al. 1990a, b). 

Because prediction of the rate of infiltration with pressurized liquid is so strongly 
dependent on prediction of local variations in K within the infiltrated porous medium, 
other features of the problem can often be neglected. In particular, the gradual 
progress of wetting, of importance in soils because pressures driving the liquid are of 
the same order as capillary pressures, can often be ignored and replaced with the 
assumption that complete saturation takes place at a single pressure, along a well- 
defined two-dimensional infiltration front. This simplifies considerably the problem 
compared with the case where liquid and gas coexist over finite distances, because the 
permeability of the medium and the volume-fraction liquid become single functions of 
strain. A further approximation we propose is to ignore the solid-phase velocity in 
Darcy’s law when porous medium strains are sufficiently large to cause significant 
variations in permeability, yet not so large as to cause the solid to move faster than the 
liquid. This additional approximation yields somewhat less precise predictions, but 
simplifies mathematical solution of the problem very significantly. 

We begin this article by describing our assumptions and analysing the problem of 
one-dimensional pressure infiltration of an initially dry and highly deformable porous 
medium. We focus on the case of a constant applied pressure driving the fluid into the 
porous medium, and use in our analysis the Boltzmann transformation in Eulerian 
coordinates first proposed by Philip (1968). We then present experimental data from 
a simulation of one-dimensional frictionless infiltration, and show that for the porous 
solid material strains of our experiment (the porous material density varies by about 
100 YO), the analysis compares well with experiment. 

2. Theory 
2.1. General problem statement and assumptions 

We consider the infiltration of a porous medium by liquid injected under constant 
applied pressure over a portion of the outer surface of the porous medium. We assume 
that the liquid and the solid porous medium are at the same temperature everywhere 
and at all times. 

We simplify all capillarity effects by assuming that infiltration takes place at a single 
capillaric pressure. Infiltration is therefore taken to occur along a well-defined two- 
dimensional infiltration front, across which the porous medium goes from completely 
dry to fully saturated (this is often called the slug-$ow assumption). This assumption, 
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FIGURE 1. (a)  Schematic illustration showing the uniaxial compression behaviour of a dry porous 
solid during infiltration by a non-wetting liquid under a constant applied pressure APT. (b)  The same 
solid before and during infiltration by a non-wetting liquid under a constant applied pressure APT. 

made previously in the context of soil infiltration experiments (Green & Ampt 191 I), 
is poorly justified in some cases (for example in the low-pressure infiltration of swelling 
soils treated by Philip & Smiles (1969); however there are many other instances, 
including composite material infiltration processing, in which this assumption has been 
shown to be legitimate for non-deforming porous media (Bear 1972; Dave 1990; Yang, 
Zografi & Miller 1988; Masur et al. 1989; Mortensen et al. 1989; Mortensen & Wong 
1990). In particular, this assumption is legitimate when the applied pressure exceeds 
significantly the capillary pressure change APy accompanying full infiltration of 
pores within the preform; in composite material processing, this is often the case. 
We note that the sign of APy varies depending on wetting characteristics of the porous 
medium: APy is negative when the liquid 'wets' the preform material, into which it is 
spontaneously drawn. When APy > 0, flow of the liquid is resisted by capillary forces 
and pressure must be applied to drive the liquid into the dry porous medium. 

We assume that gas ahead of the front is easily expelled through the uninfiltrated 
portion of the porous preform, offering negligible resistance to flow because of its 
comparatively low viscosity. The pressure within the gas that occupies the uninfiltrated 
portion of the preform is then constant. We assume that the liquid and solid materials 
themselves are incompressible, but let the porous solid medium deform macroscopially 
under applied external stress. We assume that infiltrated pores are very small in 
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comparison to the dimensional scale of the porous medium. The volume fraction of 
open pores in the dry porous material, or of liquid in the infiltrated portion of the 
porous material, is defined as 0. The local volume fraction of solid and closed porosity 
is therefore (1 - 0) everywhere. 

We neglect body forces, including gravitational forces. This assumption is valid 
when pressure gradients within the infiltrated portion of the porous medium, estimated 
as the applied pressure divided by the infiltration depth, are larger than the sum of all 
body forces in the fluid. We also neglect inertial forces, both within the preform and 
within the flowing liquid, by comparison with viscous forces at the boundary between 
the liquid and solid phases. At the infiltration front, we therefore take the change in 
local preform strain due to passage of the sharp infiltration front, and its 
concommittant pressure drop APy, to be instantaneous. At the microscopic level, we 
therefore also assume that the porous-medium flow Reynolds number Re d 1 (see 
55.1 (i)), so that fluid flow follows Darcy's Law. If the average local velocity of the 
liquid within the pores is ut, and us is the average local velocity of the solid measured 
in the same reference frame as uL, we then have 

K 
U , - U ,  = -- *UP, 

0P 

where K is the permeability tensor of the porous medium, ,u the liquid viscosity, and 
P the pressure in the liquid (Biot 1955; Philip 1968). 

Mass conservation in the solid and liquid phases, respectively, yields 

and 

a0 --[V * (1 - 
at B)u,] = 0 

a0 -+[V. Bu,] = 0. 
at (3) 

Having neglected inertial and body forces in both solid and liquid, stress equilibrium 
dictates : 

where xi are coordinate axes, and gtj are components of the effective stress tensor 
acting in the solid along these axes, counted as positive in compression and averaged 
over a surface area comprising both solid and liquid. The effective stress, which equals 
the actual average stress in all material within At' minus the fluid pressure P, 
determines the macroscopic deformation of the fully saturated porous material in A V 
(Nur & Byerlee 1971). 

We make no particular assumptions concerning the response to stress of the porous 
solid material. In particular, the relation between stress and strain may be irreversible : 
in composite fabrication this is often the case because deformation of the perform often 
breaks, deforms, or displaces individual solid elements (such as fibres) that constitute 
the porous material. 

2.2. Unidirectional injiltration under constant applied pressure 
We focus on the case of unidirectional infiltration, in which both flow and strain take 
place only along the x-direction, and we assume that the applied pressure is constant. 
We assume that the porous medium is initially homogeneous, isotropic in a plane 
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FIGURE 2. As figure 1 but during infiltration by a wetting liquid under 
a constant applied pressure APT. 

perpendicular to the x-axis (such that the infiltration direction is a principal direction 
of the preform permeability tensor) and that its response to stress is independent of 
time and rate. The liquid penetrates the porous material at one end, infiltrating it 
toward the other, fixed, end under a constant applied pressure Po, applied on the liquid 
at the entrance of the porous medium. The constant pressure difference driving the flow 
is thus APT = Po - P,, where P, is the gas pressure in the uninfiltrated porous material. 

The stress-strain curve measured on the porous medium by unidirectional 
compression tests with zero lateral strain is schematically depicted in figures 1 (a)  and 
2(a), for loading to APT and unloading to zero stress. This curve can be measured on 
a dry sample of the porous material if its mechanical response is unaffected by contact 
with the fluid. During infiltration, in the very first moments of contant between the 
liquid and the preform, there is a transient period during which the liquid is decelerated 
by the porous medium, which simultaneously is rapidly compressed to a volume fraction 
(1 - 0) = (1 - Oc), corresponding to crsx = APT on the stress-volume-fraction curve. As 
mentioned above, we do not consider the dynamics of this short initial transient, during 
which inertial effects play a dominant role, at the macroscopic level (since solid and 
liquid experience substantial accelerations), and also at the microscopic level (since 
Re > 1). We focus on subsequent moments of the process, and to this end simplify the 
problem by taking compression of the porous material to be instantaneous and Darcy's 
law to be valid throughout infiltration. 
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At time t = 0, the infiltration front is then at  the entrance of the porous material, 
which is compressed under the full applied pressure APT, figures I (b) and 2(b). Later, 
at t > 0, as the infiltration front passes, it engulfs a slice dx of the porous material, 
which sees its effective stress suddenly altered by the capillary pressure APy. 

If APy > 0, i.e. if the liquid does not wet the porous material, the porous material 
immediately behind the front therefore relaxes somewhat, following the unloading 
stress-strain curve. Its strain therefore decreases, to a value given by the unloading 
portion of the stress-strain curve at crxz = APT -APy. Conversely, if APy < 0, 
corresponding to wetting by the liquid, the porous medium contracts somewhat, first 
climbing further up the loading stress-strain curve to vzx = APT - APy. This capillarity- 
driven change in preform strain is negligible if APy is small, but can be significant in 
some systems (in infiltration by a molten metal, the high surface energies involved can 
cause APy to be on the order of 1 MPa (Mortensen & Wong 1990)). We note that by 
neglecting irreversible losses in the wetting process, APy can be estimated as (Mortensen 
1990) 

( 5 )  

where a is the contact angle of the liquid metal on the flat solid substrate material, gLA 

is the liquid matrix surface energy, and S, is the total surface area of the solid phase 
per unit volume of pores immediately ahead of the infiltration front. 

From behind the infiltration front to the preform entrance, the liquid pressure P 
increases from APy + P, to Po, and the effective stress gsx acting on the porous medium 
correspondingly decreases to zero. The compressive strain on the porous medium 
therefore decreases toward the entrance, following the stress-strain curve for unloading 
from APT - ApY. Since 8 increases with distance from the infiltration front, the pressure 
gradient within the infiltrated portion of the porous material decreases with distance 
from the infiltration front because the permeability K increases rapidly with increasing 
8. Two general features of the process are, therefore, that most relaxation of the porous 
material takes place near the infiltration front, and that this region constitutes a narrow 
‘bottleneck’ to flow of the liquid. 

The infiltration kinetics and the shape of the porous material during infiltration are 
related, and must be solved together. We use Eulerian (fixed) coordinates, and define 
the position to which the preform entrance is initially compressed as x = 0. The x-axis 
is therefore fixed in relation to the uninfiltrated end of the preform. In what follows, 
we drop the suffix x from vectorial or tensorial components. Governing equations 
(1)-(4) then become 

APy = - S, vLA cos (a), 

Darcy’s Law: 

solid conservation : 

liquid conservation : 

stress equilibrium : 

- KBP 
U 1 - U ,  = -- ep ax’ 

(7) 

(9) 

We use the Boltzmann transformation to convert these partial differential equations 
into ordinary differential equations involving dimensionless parameters compatible 



Forced unidirectional infiltration of deformable porous media 199 

with the initial and boundary conditions of the problem at hand. To this effect, we 
define x as 

x - x e  
X = p T ,  

where x ,  is the position of the porous preform entrance at time t ,  and Y is a constant. 
In our experiment, and in figures 1 and 2, the preform relaxes; hence x ,  < 0. $ is 
chosen such that the position of the infiltration front corresponds to x = 1 : 

L = $tl/Z, (1 1) 

where L is the total length of the infiltrated portion of the preform, as shown in figures 
1 and 2. Taking the partial derivatives of x with respect to x and t gives 

Expansion of Darcy's law and insertion of the stress equilibrium equation (9) yields 

where a prime denotes differentiation with respect to x. We define dimensionless liquid 
and solid velocities, 1 and s: 

1 and s are functions of x only. Equation (14) now becomes 

where, following Philip, we have defined the diffusivity D as 

au 
a8 

D(8) = K(8)-. 

Mass conservation equations (7 )  and (8) become 

and 
8' 
B 

I' = --(l-s(O)-x), 

where I' and s' are 2-derivatives of 1 and s, respectively. 
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As discussed earlier, each end of the infiltrated portion of the porous medium has its 
volume-fraction solid fixed by the unloading stress-strain curve for initial compression 
to APT. Two boundary conditions follow : 

8 =  a' at x =  I-, 

0 = 8' at x = 0, 

where a' is the pore volume fraction at pressure APT-A<, measured from the 
unloading curve after loading to APT for a non-wetting liquid, and on the 
stress-strain curve for further loading to APT - A< for a wetting liquid. 0' corresponds 
to the fully relaxed state of the porous medium after compression to APT for a non- 
wetting liquid, and to APT - A< for a wetting liquid. 

Consider a slice of infinitely small thickness dx, of the dry porous material 
immediately ahead of the infiltration front at time t. At t ,  this slice of porous material 
is compressed to 8 = BC, the volume-fraction porosity in the porous medium 
compressed under (T = APT (figures 1 b and 2b). As the infiltration front engulfs an 
infinitesimal thickness dx, of the compressed porous medium, 0 changes from OC to 8', 
and the width of the porous material changes from dx, to dx,+dx,. As the porous 
medium expands or shrinks, its solid phase thus acquires a finite velocity u,(x = 1-). A 
mass balance on the solid at the infiltration front thus dictates that 

dxf( 1 - 8') = (dx, + dx,) (1 - a'). 
Therefore 

The volume of liquid flowing past x = xAt) during time interval dt is a'u,(x = I-) dt. 
This volume of liquid fills pore space sfdx, immediately behind the infiltration front; 
hence 

dx 
dt ' 

u,(x = 1-) = f 

Knowing that x, = L + x,, inserting (I 5) and (16) into (23) and (24) yields 

g - e c  
s(x = 1-) = (1 +s(O))- 

1-a" 

(24) 

l(x = 1-) = 1 +s(O). (26) 

Equations (20), (21), (25) and (26) are boundary conditions that must be met in solving 
(17)-(19) for the parameter @ and the dimensionless functions 0(x), Q), and ~(2). We 
note that in time, a point located at fractional length x has a constant state (of 8, solid 
and liquid velocities, etc), and moves proportionally to the square-root of time 
according to 

(27) 

since the preform entrance position x, is 

x, = s(0) Yt1l2. (28) 

(29) 

xX = xL+x, = [x+s(O)] Y P ,  

In particular, the infiltration front is located at 

x, = [l +s(O)] !w2. 
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A simpler limiting case is obtained if there is no capillary pressure drop across the 
infiltration front, i.e. if APy = 0. Then, Oc = ef and (25) simplifies to 

(30) s(x = 1-) = 0. 

2.3. Nearly unidirectional infiltration under hydrostatic pressure 
As will be explained in more detail in 93.2, to avoid friction effects along the edge of 
the deforming porous-medium sample, the experiment we report is one for which the 
porous medium was strained equally in all three directions while the direction of fluid 
flow was essentially unidirectional. For comparison of theory with experiment, 
therefore, we modify slightly the unidirectional infiltration case of 92.2, by replacing 
the assumption that there is no lateral strain of the porous medium with the 
assumption that the sides of the porous medium are subjected to a constant hydrostatic 
pressure equal to Po. In this configuration, the lateral strain experienced by the porous 
medium is associated with finite solid velocities in the y- and z-directions as well. 

In general, this type of test requires two-dimensional analysis; however when the 
infiltrated length L is significantly larger than the porous-medium width, and the solid 
velocity is significantly smaller than the liquid velocity, this configuration requires only 
a single modification of the mass balance equations, providing a test of the theory free 
of friction effects. 

Having made these assumptions, flow is predominantly in the x-direction and planes 
initially perpendicular to that direction do not bend appreciably; hence we have 

In the present configuration, effective stress components q,,, vUy, and czz are equal. 
If we assume that the porous medium is isotropic, we therefore have e,, = eyy = ezr, 
where ett is strain in the i-direction. Therefore, au,,/ax = au,,/ay = au,,/az, and 
substitution of (31) in (2) gives 

ae au,, ae 
at ax ax 
--3(1 -O) - - -+U, , -  = 0. 

Similarly, insertion of (31) into (3) yields 

Because lateral velocities are zero along the axis of the porous material, and because 
there is no relative motion of liquid in relation to the solid along it edges, auCy/ay and 
au,,/az are of the same order of magnitude as duSy/i3y and au,,/az, and hence as au,,/ax. 
Since we have assumed that us, is significantly smaller than ulz, we can neglect i3ucy/i3y 
and auz,/az compared to au,,/ax. Equation (33) then becomes identical to (8). 

Since (32) replaces (7), equation (1 8) becomes 

Except for the factor 3 in the denominator of (1 S), governing equations of this case are 
similar to those which govern strictly unidirectional infiltration. 



202 J .  L. Sommer and A .  Mortensen 

2.4. Numerical solution of equations 
Nonlinear first-order equations (17), (18) or (34) and (19) were solved numerically, by 
successive integration of the functions @ , I ,  and s simultaneously across x, assuming the 
initial values for @2, Z(x = 0), and s(x = 0). The mid-point Runge-Kutta scheme was 
used for integration (Press et al. 1989). After integration from x = 0 to x = 1, the final 
values and functions involving 6,1, and s were compared with the boundary conditions 
(20), (25) and (26). A multi-dimensional Newton-Raphson method was used to adjust 
the initial guesses of @', l(x = 0), and s(x = 0) for convergence. To check for internal 
consistency within the program, the actual viscous pressure drop was compared with 
the summation of the drops in pressure over various increments of AX. The computer 
program is listed in Sommer (1992). 

2.5. A simple limiting case 
Consider now the case where the average velocity of the solid porous medium is 
everywhere significantly smaller than the average liquid velocity, us 4 uI. By subtraction 
of (7) and (8) and substitution of (9) into (6), we then have 

and 

Using the same variable transformation as in 52.2, these become 

and (16)' = 0. 

Equation (38) implies, then, that 

Since us 4 uI implies that ls(0)I 6 1,1(1) z 1, then 

81 = 0fl( l ) .  (39) 

81 = 0f .  (40) 
Insertion of (40) into Darcy's law, (37), then yields 

By integration of (41), then 
-200yx)  = efpk2. 

[2D(H)d6 = -@pP( l -x) .  

The constant Y, which measures the infiltration rate, can now be simply deduced by 
setting 8 = 6' at x = 0. The volume-fraction liquid 8 and the effective stress a can then 
be calculated directly as functions of x via (42). 

Clearly, this solution cannot be rigorous insofar as simple mass conservation dictates 
that s(0) must differ from zero if there is any relaxation of the porous medium. It can 
nonetheless provide, even in instances where there is significant relaxation of the 
preform during infiltration, a reasonable estimation of infiltration kinetics because 
most resistance to flow of the fluid into the porous medium takes place where the latter 
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is most compressed (since K decreases strongly as 0 decreases), i.e. near the infiltration 
front, which is precisely where s and v, are lowest. This solution may therefore provide 
a valid approximate prediction of infiltration kinetics in many cases since it describes 
best the ‘bottleneck’ region of’the deformed porous medium. We also note that if it is 
assumed that !P and O(x) are reasonably approximated by this method of solution, s 
can be estimated by using (18). 

Extension of this approximation to the case treated in $2.3 requires no alteration 
since we have neglected the displacement of the solid in all equations, with the corollary 
that the effect of lateral straining of the porous medium is neglected as well. 

3. Experimental procedures 
3.1. Material systems 

Type TF-5070-10 polyurethane sponge with a nominal bulk density of 0.159 g ~ m - ~ ,  
corresponding to 13.4 volume percent polyurethane (the density of polyurethane is 
1.19 g ~ m - ~ ) ,  was obtained from General Plastics Manufacturing Company, Tacoma, 
WA. This open-celled polyurethane foam is anisotropic, in that the cells are slightly 
elongated along one direction, termed the ‘rise’ direction. Figures 3(a) and 3(b) are 
electron micrographs of the sponge used in the experiment, respectively taken parallel 
and perpendicular to the rise direction. 

Prior to testing, the sponges were milled down to 17.8 cmx4.8 cmx4.8 cm 
rectangular parallelepipeds. After machining, the sponge weight and dimensions were 
measured, to confirm their nominal bulk density value of ps = 0.159 g ~ m - ~ .  

Preliminary experiments on new sponges indicated that their rheological behaviour 
varies initially with the number of times the sponges are compressed (similar results 
were found by Parker, Mehta & Car0 1987; Lanir, Sauob & Maretsky 1990; and 
Beavers, Wittenberg & Sparrow 1981 b). In order to eliminate this effect, the sponge 
material was hydrostatically compressed at least 700 times before any experiments, to 
cause its mechanical behaviour to reach steady state. This was done by enclosing the 
milled sponge inside a long hermetically sealed plastic bag, and repeatedly evacuating 
the air out completely and letting air from the open atmosphere back into the sponge. 
A thin buffer sponge was placed between the bottom of the experimental sponge 
sample and the vacuum port to ensure that the sponge was pressed uniformly along its 
length and to ensure uniformity of air flow throughout the sponge during cycling. 

To measure volume fractions of the sponge and liquid velocity during infiltration, 
lines 6.35 mm (0.25 in.) apart were drawn across the width of the sponge, perpendicular 
to the infiltration direction. 

3.2. Sponge infiltration experiments 
A common experimental difficulty in the experimental investigation of unidirectional 
flow through deformable porous media arises along the interface between the porous 
medium and its container, where two conditions must be simultaneously met: (i) the 
sample must slide free of friction along the inner surface of the container, while (ii) fluid 
flow between the container and the porous medium must be negligible. These two 
conditions are difficult to meet simultaneously, because a tight fit of the porous 
material along the sides of the container tends to produce high friction, while even a 
small gap causes significant leakage of fluid along the sides of the porous medium (e.g. 
Lal, Bridge & Collis-George 1970; Beavers, Hajii & Sparrow 1981a; Beavers et al. 
1981 b). One technique that has been used to circumvent this difficulty is to surround 
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FIGURE 3. Micrograph of the polyurethane foam viewed (a) along the rise direction, and 
(6)  perpendicular to the rise direction. 

the porous medium with several rings, each of which encloses the porous solid tightly, 
yet slides independently along the container walls (e.g. Smiles & Colombera 1975). This 
technique has been used with success on soil samples; however friction between the 
rings and the porous medium still perturbs locally deformation of the solid, and the gap 
between rings can perturb fluid flow at the outer periphery of the porous medium. 

We therefore used an alternative approach, which eliminates these effects. Instead of 
seeking to prevent flow at the same time as lateral straining along the porous-medium 
periphery, we embedded a column of porous material in the fluid, leaving its sides free 
to expand or contract laterally. The liquid was prevented from infiltrating the porous 
material laterally by surrounding the porous material with a thin impermeable 
membrane sealing its sides, letting the fluid infiltrate only at one end. Apart for slight 
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FIGURE 4. Schematic of the apparatus used to infiltrate the sponge with ethylene glycol. 

loss of unidirectionality, there is no perturbation of fluid flow along the edge of the 
porous body, while at the same time there is no friction. Provided the rate of expansion 
of the porous solid during infiltration remains smaller than the infiltration front 
velocity, the only modification to the governing equations resulting from the lateral 
expansion is the replacement of (18) with (34), as explained in $2.3. 

In addition to the relief this approach provides from friction or edge effects 
commonly found in unidirectional flow experiments, in this configuration the local 
strain within the porous material during infiltration can be directly measured with 
good precision from its local width distribution (since the lateral strain equals the 
longitudinal strain). Additionally, mechanical characterization and prestraining of the 
porous material is somewhat simplified in this configuration, as shown in $3.3.  

The infiltration apparatus is shown schematically in figure 4. Its chamber was made 
of Plexiglas and had inside dimensions of 50.8 mm x 50.8 mm. The Plexiglas backing 
consisted of a hollow aluminium base, two outlets for the vacuum reservoir, a manual 
vent, and an inlet for the pressure transducer. The hollow aluminium base was 
machined to fit loosely inside the infiltration chamber and then sealed to the Plexiglas 
backing with silicone rubber and epoxy to produce a vacuum seal. A 2.54 cm thick 
aluminium honeycomb along with a stainless steel screen (24 Tyler mesh) were glued 
with epoxy within the aluminium base to act as supports for the sponge. 

The sides of the sponge were surrounded by a transparent plastic bag 19 pm thick, 
which was hermetically sealed so as to allow the sponge to be somewhat loose inside 
the bag. The outer edges on one end of the sponge were sealed to the ends of the open 
bag by a thin 1 mm layer of epoxy to prevent the bag from moving during infiltration. 
The other end of the sponge was supported on the aluminium base. The surrounding 
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bag continued halfway over the outside surface of the aluminium base and was sealed 
to the sides of the base. This configuration allowed liquid infiltration to occur only 
through the front face of the sponge, opposite the aluminium base. 

Constant vacuum at the sponge end near the aluminium base was achieved by 
connecting the back of the aluminium base to a large 160 litre vacuum reservoir via two 
1.27 cm i.d. hoses. Vacuum could then be rapidly applied to the bottom of the sponge 
by opening two solenoid valves connected to the vacuum hoses. The open end of the 
infiltration chamber was submerged in a large vat of ethylene glycol containing 
coloured dye. The entrance of the infiltration chamber was suspended away from the 
bottom of the vat by a porous metal brace, built in such a way as to support the 
chamber during infiltration while allowing unimpeded liquid flow into the chamber 
mouth. A mercury thermometer was used to monitor the temperature of the fluid. A 
differential pressure transducer (Omega Engineering Inc., Stamford, CT) was used 
between the top of the sponge and the inside of the hollow aluminium base to allow 
the continuous measurement of the pressure drop across the sponge during infiltration. 

A Panasonic AG-1830 digital video cassette recorder (VCR) was used to record and 
then replay the infiltration event one still field (1/60 s) at a time. The ability to monitor 
progression of the infiltration front was improved significantly by using digital 
enhancement of the image contrast. This produced a clearer visual distinction between 
the infiltrated and uninfiltrated portions of the sponge. 

In an infiltration experiment, the moment when the infiltration front first contacted 
the sponge was defined as t = 0. The infiltration front position was then recorded with 
time. By knowing the position of the infiltration front and the sponge entrance, 
(defined in (10)) was calculated for each line drawn on the face of the infiltrated portion 
of the sponge. The width of the sponge at that point was used to measure the local 8 
of the sponge, and deduce the local liquid pressure at that point knowing the 
experimental curve of 8 vs. hydrostatic pressure. 

3.3. Hydrostatic compression tests 
Two experiments were performed to characterize the foam before actual infiltration 
by the liquid. These were: (i) measurements of the foam volume-fraction porosity, 8, 
at different hydrostatic pressure, P ,  and (ii) tests of the viscoelastic behaviour of the 
sponge. 

(i) 8 us. P. The foam was placed inside a sealed plastic bag from which the air was 
evacuated into a vacuum reservoir, and sponge dimensions were measured for various 
values of internal pressure. A thin ‘buffer’ sponge was used at the entrance of the 
vacuum reservoir port to shield the sponge used for infiltration from distortion caused 
by the vacuum port. Initial measurements were taken approximately 3 min after the 
sponge was totally evacuated, and the sponge was allowed to equilibrate for 40 s before 
measurements were taken after each increment in internal gas pressure, from full 
vacuum to atmospheric pressure. From the measured dimensions of the sponge, 8 for 
a given hydrostatic pressure was then deduced, knowing the sponge weight. These tests 
were performed twice within a two-hour interval to verify reproducibility of the 
measurement. 

(ii) Viscoelastic behaviour tests. Strain changes in the sponge held under a constant 
hydrostatic pressure for both short and long time periods were measured by evacuating 
the sponge enclosed in a plastic bag and by measuring the width of the sponge over a 
duration of 40 min, starting from the moment when the vacuum was first applied. 
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3.4. Foam permeability measurements 
Although we neglect the progressive nature of infiltration by making the slug-flow 
approximation, permeability measurements were performed so as to duplicate the local 
liquid pressure and volume-fraction solid simultaneously present in the sponge during 
infiltration. Therefore, permeability was measured for variable foam volume fractions 
with average liquid pressures corresponding to one atmosphere minus the mechanical 
hydrostatic stress required to compress the preform to that volume fraction. 

This was achieved by enclosing the foams in four aluminium boxes, corresponding 
to 25.2,29.7, 37 and 52.2 kPa, having appropriate widths and lengths derived from the 
hydrostatic pressure experiments on the dry sponge before infiltration. Sponges of the 
appropriate size and orientation were then inserted in each box by first surrounding the 
sponge pieces with a plastic bag, evacuating the bag, and letting it expand after 
insertion in the aluminium box. 

The permeability of sponges within these boxes was then measured with a falling 
head permeameter (Lambe & Whitman 1979) in which the average liquid pressure was 
maintained equal to the atmospheric pressure minus the stress corresponding to the 
dimensions of the sponge in the box. The pressure head driving flow of the liquid 
produced negligible compression of the prestrained sponge during the experiment. 

Saturation was determined by closing the valve on the base of the sponge and then 
measuring the liquid drop after atmospheric pressure had been applied on top of the 
liquid, assuming that the sponge is completely saturated at atmospheric pressure. 
Knowing the liquid drop volume and the volume of the enclosed sponge, the liquid 
saturation could be calculated. The temperature of the liquid was measured 
immediately after the permeability experiment. 

4. Experimental results 

4.1. Hydrostatic pressure us. 0 
The results of the hydrostatic pressure test are shown in figure 5. The curves resemble 
qualitatively those of Beavers & Wilson (1975), Parker et al. (1987) and Lanir et al. 
(1990). There was no noticeable difference between data from two tests performed two 
hours apart from each other. For calculations, the average of both curves was fit with 
a seventh-order polynomial : 

0- = A + B* ( I - 0) + c * ( 1 - 0 ) 2  + . . . H * ( 1 - 0)7, (43) 

where A = -2.329 164 x 10' Pa; B = 7.1349318 x los Pa; C = -9.255285 x lo9 Pa; 
D = 6.597487 x lo1' Pa; E = -2.791 823 x lo1' Pa; F = 7.01 65383 x 10" Pa; 
G = -9.702267 x loll Pa and H = 5.698018 x 10" Pa. The error in measuring 0 
was calculated to be about 5 %. 

4.2. Viscoelastic behauiour of the sponge 
Curves of sponge solid fraction (1 -0) us. time are shown in figure 6. As seen from 
figure 6 (a), 0 changes relatively little after the vacuum has been applied for more than 
20 s, the change in 0 being approximately 0.012 between 20 and 60 s.  (1 -0) for longer 
relaxation times is shown in figure 6(b). The average 0 of the sponge between 20 and 
60 s is higher than its value at 40 min by only about 0.02; hence the sponge reaches a 
pseudo-steady state condition in 20 s, and continues to relax very slowly afterwards. 
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FIGURE 5. Plot of the results for two separate foam hydrostatic pressure tests, done approximately 
two hours apart on the same sponge used for the infiltration experiment. 
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1-8 
FIGURE 7. Experimental sponge permeability K as a function of volume fraction. The straight line 

corresponds to K = 1.4729 x m2 x 10(-6~B6s4(1-s)). 

Effective Liquid 
stress pressure 
(MPa) (MP4  
0.025 0.075 
0.03 0.07 
0.037 0.063 
0.052 0.048 

TABLE 1. 

0, 
K unsaturated 

(m2) void fraction v s  

0.163 1.0 x lo-" 0 
0.195 7.1 x 1O-lZ 0.005 
0.234 3.5 x 10-l2 0.013 
0.283 1.5 x 10-l2 0.025 

Polyurethane foam permeability 

4.3. Sponge permeability 
Table 1 summarizes sponge permeability measurements. As shown in figure 7, the data 
points are fitted well by an exponential curve: 

, (44) K = KO x 10'-M'l-B" 

where KO and A4 are 1.4729 x m2 and 6.9654, respectively. The error calculated 
for the permeability is approximately 10 YO. 

In table 1, 8, represents the fraction of unfilled void space at a total pressure of 
one atmosphere and liquid pressure P, assuming that there is complete saturation at 
P = 1 atmosphere. It was also observed that the ethylene glycol did not spontaneously 
wet the sponge, i.e. 8, equals 1.0 for a liquid pressure P = 0. It is seen that the values 
of the unsaturated void fraction are finite, but very small. 

4.4. Experimental results for sponge injiltration 
The temperature of the ethylene glycol immediately before infiltration was 25.8 "C. The 
pressure drop registered between the infiltration front and the back of the sponge 
during the actual event was 99.5 kPa. Various times during the infiltration are 
reproduced from the video images in figures 8 (a)-8 (d) .  In these figures, the infiltration 
front is highlighted using the digital video recorder, as described above. Slight 
differences in response were found between the vertical and horizontal directions on the 
video monitor : the magnification factor differed slightly with direction, and the image 
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(b) 

FIGURE 8. VCR images of sponge infiltration experiment at (a) t < 0 s, (6)  t = 1 s ,  ( c )  t = 31 s, 
(d) t = 67 s. Light reflection effects caused variations in the shading of the infiltrated region, which 
varied from dark grey to light grey near the infiltration front and the porous-medium entrance. 
The infiltration front is therefore visible as the separation line between white uninfiltrated, and light 
grey infiltrated areas of the sponge, marked with an arrow on the figures. 

-20 0 20 40 60 

t (s) 

FIGURE 9. Total infiltrated length L2 as a function of time. 

enhancement program of the video recorder added 1 .O mm to the visible widths of the 
sponge, while leaving vertical features unaffected. These effects were taken into account 
in data collection. 

The plot of L* us. time in figure 9 shows that the curve becomes a straight line after 
approximately 17 s. The value of qP-obtained from the slope of the line was 
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FIGURE 10. (a) Squared distance from x = 0 to the infiltration front as a function of time. 
(b) Squared distance from the sponge entrance to x = 0 as a function of time. 

1.2 x m2 s-l with an experimental error of 10%. Plots of x; and x: versus t are 
given in figures 10(a) and lO(b), respectively. 

The measured volume fraction solid (1 - 0) in the sponge us. x during infiltration is 
shown in figure 11. As the infiltration front moves through the sponge, the volume 
fraction profile within the infiltrated portion of the sponge should remain constant in 
this transformed axis. At earlier times, the curves tend to be shifted more to the left, 
i.e. to smaller values of 8. At longer times, greater than 17 s, the sponge profile tends 
to stabilize, although there still is a very small shift to the right as the sponge continues 
to relax. 
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FIGURE 1 1 .  Experimental volume-fraction solid distribution along the infiltrated length of the 
sponge at various times, compared with theoretical predictions. 

5.  Discussion 
5.1. Assumptions of the model 

(i) Darcy’s law. For Darcy’s law to be valid, the Reynolds number Re, defined by 

Re = dPV,/P’ (45) 
where d is the pore diameter of the porous medium, should be lower than a value of 
about 1. This corresponds to a maximum liquid velocity of 0.03 m s-l (the viscosity and 
density of ethylene glycol being 15.7 x Pa s and 1.109 g cmP3, respectively). With 
L2 x 1.2 x lo-* t (figure 9), dL/dt reaches 0.03 m s-’ after about 0.03 s, which is much 
smaller than the duration of the experiment. Hence, the time for the liquid velocity to 
fall everywhere below the limit set by (45) is trivial on the scale of the experiment, and 
flow is Darcian. The influence of gravity is negligible during the infiltration experiment: 
the maximum infiltration distance measured vertically was 9.8 cm, which corresponds 
to a pressure drop of 1.1 kPa, i.e. an error of 1 YO, compared to the pressure drop across 
the sponge during the infiltration, which was 99.5 kPa. 

(ii) Wetting and permeability. The first drainage curve of the dry uncompressed 
sponge was measured to determine the degree of saturation with applied pressure. 
There was no spontaneous infiltration, but when the applied pressure is 14.2 kPa, the 
liquid fills approximately 89 YO of the pore space. Therefore, APy at the infiltration front 
is positive, and significantly lower than 98 kPa. From (5), APy should increase owing 
to compression of the sponge by a factor of only (Oo / / ec )  x 1.3, when total atmospheric 
pressure is applied on the sponge, thus remaining significantly below 14.2 kPa. We 
have therefore assumed in our calculations that APy = 0. 

As the applied pressure varies, the saturation changes little. Knowing that small 
deviations from full saturation exert only a small influence on relative permeability of 
a porous medium with a non-wetting fluid (Dullien 1979; Anderson 1987; Morel- 
Seytoux 1969), variations in the permeability K of the sponge with applied pressure are 
mostly due to variations in 8. 
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The equation found by Barry & Aldis (1990) for permeability of a polyurethane 
sponge from data of Parker et al. (1987) for unidirectional steady-state flow of liquid 
did not fit the permeability data as well as (44), and so was not used. 

(iii) Experimental error in 8 and x. 8 was measured using the width of the sponge; 
the largest error in 8 was at the infiltration front, and is estimated at about 4%. The 
error in measuring x, the fractional length along the infiltrated sponge, results mostly 
from slight curvature of the lines drawn on the sponge in the more distorted regions, 
located between x = 0.65 and 0.85. The largest error occurs when L, 2, and infiltration 
times are relatively small. At t = 23 s and = 0.68, a maximum error of about 4 % was 
calculated. 

(iv) Eflects of air evacuation and viscoelasticity. As infiltration of the sponge only 
lasted approximately one minute, some error is introduced owing to incomplete 
relaxation of the sponge during infiltration compared to data in the curve of figure 6. 
This was estimated to introduce a total error in 8 of 0.09. 

(v) Eflect of evaporation at the infiltration front. Boiling of the ethylene glycol 
infiltrant could have occurred at the infiltration front owing to the vacuum, though it 
was not discernable at the liquid-vacuum interface during infiltration. The resulting 
temperature drop at the infiltration front was estimated to be approximately -0.01 K, 
which does not influence the infiltration kinetics noticeably (Sommer 1992). 

(vi) Influence of the fluid on mechanical properties of the sponge. Beavers et al. 
(1981 b) noticed that water-submerged sponges would strain to a further degree under 
a given applied stress than when in the dry state. This was attributed to liquid 
lubrication effects that may have occurred within the internal structure of the wet 
sponge during compression. Since all mechanical testing on the sponge was done in the 
dry state (to prevent complications in the results induced by flow of the liquid), some 
added experimental error in the mechanical relaxation properties of the sponge may 
have resulted from this effect. 

5.2. Comparison of theory with experiment 
Experimental data show that after about 17 s, plots of L2, x;, and x," versus t, figures 
9 and 10, all become linear. Since mechanical tests show that time dependence in the 
mechanical behaviour of the sponge becomes negligible after at most 20 s, we conclude 
that the experimental data confirm the analysis. This time dependence of infiltration 
parameters has been observed in previous work on flow of water into swelling soils 
(Smiles & Rosenthal 1968; Smiles & Colombera 1975). 

m2 s-' while theory predicts 9.1 x lop5 m2 s-l. At 
the infiltration front, 1 was measured to be 0.96 while the theoretical value obtained was 
0.80. Experimental error in the measured value of $2 is 10%. The uncertainty in the 
predicted value of $2 is roughly proportional to the uncertainty in the permeability, K. 
The uncertainty in K that arises from experimental error in the correlation between K 
and 8 is on the order of A K / K  = 12 YO. The experimental error in the measurement of 
8, A8/8 = 4 YO introduces additional uncertainty in the predicted permeability, on the 
order of 60%. The predicted rate of infiltration, measured by $2, is therefore well 
within experimental error of the measured value. 

Figure 11 shows the volume fraction along the infiltrated sample at different times, 
and compares these data with theory. For t > 20 s, the curve is invariant in time, in 
agreement with theory and with previous work on flow of water into swelling soils 
(Smiles & Rosenthall968 ; Smiles & Colombera 1975). For t < 20 s, the curve is shifted 
somewhat to the left of the pseudo-steady-state value, as expected for incomplete 
relaxation of the sponge due to its viscoelastic behaviour. Comparison between 

+2 was measured to be 1.2 x 
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FIGURE 12. Theoretical predictions along infiltrated length for the experiment: 
(a)  K ,  (b) I, and (c) s. 

predicted and measured pseudo-steady-state curves of (1 -8) versus x is very 
satisfactory. In particular, agreement of 6' at the infiltration front with theory 
legitimizes the assumption made earlier that APy z 0. 

The predicted curve of local permeability, K, as a function of x during infiltration 
is shown in figure 12(a). K tends to drop off precipitously at lower 8, near the 
infiltration front. This region therefore constitutes a 'bottleneck' to infiltration, and 
dominates the kinetics of the process. Predicted curves of I and s as a function of x are 
shown in figures 12(b) and 12(c). It is seen that 1 and s, as well as 8 (figure 1 I), vary 
rapidly behind the infiltration front, and reach relatively steady values for x < 0.65. 
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5.3. Comparison of approximate theory with experiment 
We now test the additional approximation of neglecting v, compared to vL, introduced 
in $2.5. By insertion of (43) and (44) into (42) and numerical integration (using 
MathematicaTM, software trademark of Wolfram Research Inc., Champaign, Ill.), !P 
is now predicted to equal 1.04 x m-' s-l. This corresponds to an increase in Y,  and 
hence in the predicted rate of infiltration, of 7 % compared to the more precise analysis. 
Keeping in mind the very high rate of variation of permeability K with 0, the error 
introduced is thus small. The predicted distribution of fraction solid (1 - 0) versus 
fractional infiltrated length 2, figure 13, shows less good agreement with experiment 
than the more precise analysis, but provides nonetheless a very acceptable prediction 
considering the much greater ease of calculation. 

The error introduced in making the simplifying assumption of $2.5, namely 
neglecting us compared to uL or equivalently s compared to I and, hence, 1, can be tested 
for consistency by estimation of s(0) via a simple macroscopic mass balance: 

Since -s($ < -s(O) everywhere, then, the relative error introduced by the 
approximation of $2.5 in the predicted rate of infiltration, Y, should be at most on the 
order of s(0) estimated above. Comparing s(0) from (46) to 1 therefore provides a 
simple test of the error introduced in using the approximate method of $2.5. 

6. Conclusions 
Flow of a pressurized liquid into a deformable porous medium can be analysed using 

the slug-flow assumption when the applied pressure exceeds significantly the capillary 
pressure for full saturation of the porous medium with the liquid. This assumption 
reduces significantly the number of system parameters required to predict flow rates in 
the porous medium, and thus simplifies considerably the problem. We apply this 
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assumption to treat unidirectional horizontal infiltration driven by constant pressure 
using the Boltzmann transformation. 

Experiments performed on a polyurethane sponge in near-unidirectional infiltration 
with hydrostatic strain compare well with theoretical predictions after an initial 
transient resulting largely from viscoelasticity in the sponge behaviour. Predicted 
infiltration rates and strain distributions within the porous medium are in quantitative 
agreement with the analysis, and thus confirm the validity of its simplifying 
assumptions. 

Neglecting the solid-phase velocity compared with that of the liquid reduces the 
mathematical solution of the problem to a single numerical integration of measurable 
materials parameters. This simplification provides a reasonable estimate of infiltration 
kinetics and porous-medium strain distribution because solid-phase velocities are 
lowest near the infiltration front, where permeability is lowest, and 0 variations highest. 
This approximate model agrees relatively well with the experimental data. 

The principal conclusion from this work is that analysis of infiltration with 
significant applied loads and porous-medium deformation can be conducted using the 
slug-flow approximation. This approximation reduces very significantly the number of 
relevant materials parameters and, hence, the number of necessary measurements of 
porous medium properties, since partial saturation and its influence on permeability 
and porous-medium rheology need not be considered. 

We gratefully acknowledge sponsorship of this work by ALCOA under the 
supervision of Dr Warren Hunt. 
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